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Phase-integral formulae in the complex angular momentum 
(CAM) pole analysis 
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Institute of Theoretical Physics, University of Uppsala, S-752 38 Uppsala, Sweden: and 
Fachbereich Physik, Universitat Kaiserslautern, D-6750 Kaiserslautern, West Germany 

Received 15 February 1983 

Abstract. Formulae for calculating CAM pole positions and corresponding S-matrix 
residues are derived within the framework of the phase-integral method of Froman and 
Froman. The formulae allow for the use of higher-order approximations with rigorous 
error estimates. The contributions from two and three isolated turning points are con- 
sidered, which allows applications in the study of rainbow and diffraction features as well 
as orbiting phenomena in elastic scattering processes. 

1. Introduction 

A Regge state for a purely elastic scattering process is an analytical continuation, in 
the complex angular momentum plane, of a regular solution of the radial Schrodinger 
equation such that at large distances only outgoing waves are present. To be more 
specific we write our equation as 

d2&(r)/dr2 + Q2(r)41(r) = 0, (1.1) 

Q 2 ( r ) = k 2 -  U(r ) - l ( I+  l ) / r2 .  (1.2) 

with the function Q 2 ( r )  defined by 

Here, k ( > O )  is the wavenumber pertaining to our particular scattering process and 
U ( r )  a so far unspecified isotropic, complex local potential. For a large class of 
potentials a regular solution of (1.1) quite generally takes the asymptotic form 

(1.3) 

in some region of the complex I-plane containing the non-negative integers. The 
quantity Nl in (1.3) is a normalisation constant and SI is the scattering matrix (or S 
matrix) element. 

We realise that a Regge state must correspond to a pole, at 1 = I,, say, of the S 
matrix, a so called Regge or CAM pole. A simple introduction to the non-relativistic 
theory of CAM poles is given by Thylwe (1983), and more extensive reviews are 
presented by Nussenzweig (1972), Norenberg and Weidenmuller (1976) and Connor 
(1980). 

Two quantities of particular interest appear in complex angular momentum 
theories: the CAM pole position I ,  and the corresponding S-matrix residue r,. In 
recent investigations (see e.g. Connor et a1 1979, 1980, Sukumar et a1 1975, Bosanac 
t Present address. 

dl  ( r )  r - c m  - Nl [exp(-ikr + i d / 2 )  -Si exp(ikr - i~rl/2)]  
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1978 and references given therein) great effort has been made to simplify the calcula- 
tions of these quantities and to understand their main behaviour, e.g. as functions of 
the energy and of the parameters of the potential used. Semiclassical techniques have 
thereby proved successful and reliable for most applications in the field of heavy- 
particle elastic scattering. 

The purpose of the present paper is to derive accurate formulae €or calculating 
CAM pole positions and S-matrix residues within the framework of the phase-integral 
method developed by Froman and Froman (Froman and Froman 1965, 1974a, b, 
Froman 1966, 1970). An obvious strength of these formulae is that they allow for a 
systematic use of higher-order approximations with rigorous error estimates. Further- 
more, the formulae are derived to apply to a large class of complex optical model 
potentials which tend to zero faster than l / r ,  when r tends to infinity. 

For the large class of potentials employed throughout the present analysis, there 
exists in many cases a great number of turning points. However, it will be assumed 
that not more than three turning points contribute essentially to the properties of SI 
in (1.3). The main fields of application of the derived formulae are the investigations 
of translational rainbow and diffraction features as well as orbiting effects of heavy- 
particle elastic scattering. 

The theoretical foundation of this paper is presented in a work by Thylwe and 
Froman (1983), where also the single turning point case is studied in detail. In 9: 2 
we quote an exact phase-integral representation of the scattering matrix, which is 
derived by Thylwe and Froman (1983). From this representation one obtains, in a 
simple way, an exact CAM pole condition and an exact expression for the S-matrix 
residues. Certain quantities occurring in these expressions, the so called F-matrix 
elements, are difficult to calulate exactly but can be satisfactorily estimated. Thus, in 
9: 3 we derive approximate expressions for the F-matrix elements, for cases where two 
or three isolated turning points contribute essentially to the final results. Approximate 
formulae for CAM pole positions and for the related residues are found in 9: 4 .  There 
we also discuss the pole trajectories, i.e. how the pole positions depend on the energy, 
and the pole string, i.e. the alignment of poles in the complex 1-plane at a given 
energy. Conclusions are given in 9: 5 .  

2. Exact CAM pole condition and S-matrix residues 

In a paper by Thylwe and Froman (1983), hereafter referred to as I, two equivalent 
representations of the S matrix are derived in terms of the F-matrix elements intro- 
duced by Froman and Froman (1965). These representations are valid for complex 
physical potentials as well as for complex angular momenta. In the present context 
we shall assume the complex r-plane to be cut in such a way that formula (3.27) in 
I is valid, i.e. 

where W(r) is defined as a contour integral 

W(r) = 1 dr’ q ( r ‘ )  
R r )  

of the function q ( r )  given by equations (3.7)-(3.10c) in I. We shall use the name 
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transition points for zeros of the first-order expression for q 2 ( r ) ,  i.e. zeros of the 
function Q k o d ( r )  defined by ( 3 . 1 2 ~ )  in I. For some of the transition points which 
become particularly important in the derivation of the formulae we shall use the name 
turning points. In (2.2) it is assumed that the contour T ( r )  circumvents one of the 
relevant turning points as depicted in figure 1. 

The function q ( r )  in (2.2) is made single valued by the introduction of cuts in the 
complex r-plane, proceeding away from the turning points toward infinity in the first 
or fourth quadrant. At the same time the phase of q(r )  is defined according to ( 3 . 1 4 ~ )  
in I. 

When going from one choice of reference point, ( j ) ,  (in the present paper always 
a turning point) to another, ( j ' ) ,  W ( r )  changes its value from W i ( r )  to W j f ( r )  related 
by the equation 

(2.3) 
yiri is in the first-order phase-integral approximation the phase integral from turning 
point ( j ' )  to ( j ) .  In higher-order approximations the integration must proceed along 
a closed contour Titi circumventing both turning points as shown in figure 2, and its 
value must be halved, i.e. 

Wj+) = w j ( r )  + yj,j. 

Complex r - plane 

ijl i 
Complex r-plane 

J '  I 

Figure 1. Schematic drawing of the contour T,(r) 
pertaining to a particular choice of reference point 
(here a turning point ( j ) )  to define the phase integral 
W,(r) in (2.2). The contour starts at the point r on 
the second Riemann sheet, circumvents the turning 
point ( j )  and the region where the associated zeros 
of q, which are present when higher-order approxi- 
mations are used, are located and ends at the point 
r on the first Riemann sheet. The cut in the complex 
r-plane is indicated by the wavy line. 

Figure 2. Schematic illustration of the closed con- 
tour T,i. appearing in the definition (2.4) of y,,,, and 
its relation to T,(r) and r,<(r). 

From (2.3) one easily notices the relations 

y..  = o  yjJ i  = - y j j ,  , I 1  9 y . .  I I "  - y . . . + y  - I f  I . I . , , .  I (2.5a, 6,  c )  

The F matrix connecting two arbitrary points rl  and r2 changes its value according 
to the formula 

(2.6) P i ' ) ( r l ,  r2)  = E ~ ~ F " ) ( r l ,  r 2 ) ~ l t i  
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where the transformation matrix is given by 

The relations (2.5~-c ) imply the following transformation matrix rules 

E . .  IJ = 1 9 Er? =Ei , ; ,  Eii,, = Eli,E,!l , ,  = Eifi , ,Eiit ,  (2.8a, 6, c )  

As pointed out on p 21 of Froman and Froman (1965) only the non-diagonal F-matrix 
elements alter their values by such a transformation (2.6). In particular we have 

Fyi' ( r l  , r 2 )  = FYi ( r l  , r 2 )  exp(-2iyii0. (2.9) 

With the aid of (2.3) and (2.9) we observe that the complete S-matrix element in 
(2.1) is unaffected by a change of reference point, as expected. 

If all the phase-integral quantities appearing in (2.1) are finite, it follows that a 
necessary condition for the S matrix to have a pole is given by 

F,,(+O, +CO) = 0. (2.10) 

To be sure that a solution of (2.10) is a pole of the S matrix one must also check that 
F22(+0, +CO) does not vanish simultaneously. 

If (2.10) defines a simple pole of the S matrix at I = I,, say, then the corresponding 
residue r ,  of Sl is obtained from 

(2.11) 

The generalisation of (2.11) to poles of higher multiplicity is straightforward. 
The purpose of the following section is to find approximate analytical expressions 

for the F-matrix elements occurring in (2.10) and (2.11) for the cases of two and 
three contributing, isolated turning points. In fact, at least two turning points are 
required to produce a pole of the S matrix. 

3. F-matrix elements 

In the present section we shall proceed essentially in the same way as in 9: 4 of I, but 
we shall extend the treatment to those cases where there are two or even three zeros 
of QLod(r) which must be taken into account. Usually the two-turning-point ( 2 ~ )  
problem is associated with bound states in a single potential well or, less frequently, 
penetration through a single barrier, but we shall see that such a configuration is also 
responsible for CAM poles (or zeros) of the S matrix, even for monotonically repulsive 
potentials (see Dombey and Jones 1968 and Connor 1980). The three-turning-point 
( 3 ~ )  configuration is frequently encountered in the theory of shape resonances from 
the radial Schrodinger equation. 

The single-turning-point ( IT)  situation illustrated in figure 3 is characterised in 
detail in I. When there is more than one turning point influencing essentially the 
behaviour of the S matrix, we expect at least one of the conditions in Q 4 of I, 
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i Complex r -p lane 

Figure 3. Schematic drawing of the path ‘2 which is used for approximating the F-matrix 
elements when only a single complex turning point has to be taken into account. The 
remote part of the path A ,  is not explicitly shown, since the treatment in that region is 
the same for all cases considered and given previously in I. Relevant Stokes’ lines (broken) 
and anti-Stokes’ lines (full) are indicated, with arrows pointing in the direction for which 
idw>O and dw >0,  respectively. The single-turning-point situation can be disturbed by 
an approach of a second turning point in two topologically different ways. These are also 
shown in the figure. 

characterising a IT  problem, to be violated. It is reasonable to expect that the very 
first assumption that loses its justification is the one concerning the smallness of the 
p integral along the path . A l ,  depicted in figure 3, while at the same time nothing 
else is drastically changed. For example, the turning point (1) still has the status of 
being the innermost one with respect to the origin. It means that the p integral starts 
to get large only on the part of A,  which coincides with the ‘free’ anti-Stokes line of 
(l), due to the presence of the second turning point. 

In figure 3 the two possible topologies are shown which can arise when a IT  
configuration is essentially perturbed by a well separated turning point (2). The 
situation where (2) approaches the ‘free’ anti-Stokes line from below is met in the 
study of zeros of SI  in the complex I-plane and will not be analysed in detail here. 
Figure 4 shows schematically a sequence of configurations which are topologically 
equivalent with figures 4 ( a )  and 4 ( e ) ,  indicating the breaking down limits of the 
topology. The understanding of the configurations in figure 4 is an important part in 
our study before we add the complications of a third turning point. 

When a well isolated turning point is situated in the shaded area in figure 3 and 
no other turning points are present, then the F matrix can be estimated in exactly 
the same way as in the IT case. We notice that i t  is merely the existence of a IT path 
A I ,  along which the p integral is much smaller than unity, which characterises this 
case, not the presence alone of other turning points. 

Let us now turn to the configuration in figure 4 ( a )  which illustrates the limiting 
case where IT  and 2~ treatments meet. In the present analysis where only well 
separated transition points are considered there must not be any significant difference 
between a IT  and a 2~ treatment of figure 4 ( a ) .  In other words, the contribution from 
(2) must be exponentially small compared with that from (1). 

In figure 4 ( b )  we observe that the anti-Stokes line emerging from (1) and extending 
to the right towards infinity comes closer to the second turning point. For this situation 
the CL integral along the IT  path A,  is no longer a small quantity compared with unity. 
Clearly both zeros of Q i o d ( r )  must then be taken into account, and a new path A2 
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Figure 4. Schematic illustrations of topologically equivalent configurations (a  ) - ( e )  of two 
well separated turning points. The  importance of turning point (2) increases from being 
insignificant in ( a )  to become entirely dominant in configuration ( e ) .  

must be constructed which circumvents each zero, crossing the emerging anti-Stokes 
lines at sufficiently large distance from the corresponding turning points (see below). 

Analogous arguments apply also to the situations illustrated in figures 4(c), ( d ) .  
Furthermore, we can see in figure 4 ( d )  that the right-hand turning point tends to be 
the dominating one, and that (1) no longer has a 'free' anti-Stokes line. Finally the 
role of (1) has become insignificant in the limiting case shown in figure 4(e). 

In 9: 3.1 we investigate in more detail the 2~ problem, as it is relevant for the CAM 
poles of the S matrix. With our introductory considerations in mind we can concentrate 
our study on the situations shown in figures 4 ( 6 ) - ( d ) .  The other configurations can 
be handled by IT estimates of the F matrix. It turns out that figure 4 ( c )  represents 
the relevant 2~ configuration which can produce CAM poles in the S matrix. In 9: 3.2 
a third turning point is introduced so as to 'perturb' the ZT configuration and the 
important approximative matrix elements Fzl(+O, +CO) and Fz2(+0,  $03) in (2.1) are 
derived. 

3.1. Two well separated turning points 

The purpose of this subsection is to obtain the approximate matrix F(+O, +CO) for 
the situations in figures 4 ( 6 ) - ( d ) .  We start with the situation in figure 4(b)  which is 
specified by the condition lexp(iylz)l s 1. To obtain approximate expressions for the 
F-matrix elements we can either use a IT estimate, corresponding to the path A I ,  or 
a ZT estimate, corresponding to the path A z ,  both paths being drawn schematically 
in figure 5 .  
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The IT estimate (cf equations (4.14a, 6)  in I) yields the result 

or, with the aid of (2.6), 

depending on the choice of reference point for the phase integrals. Note that the 
relevant (single) turning point in the estimates (3.1) and (3.2) is ( l ) ,  while 2 does not 
satisfy condition (iii) in I required for a single turning point. The p-integral p1 in 
(3.1)-(3.2) is calculated along the entire path A l .  We observe that two F-matrix 
elements are unknown according to these estimates. However, for our purposes only 
the 21- and 22-elements are of interest. 

Complex r -  pione 
Complex r -p lone  

\ " A 2  

Figure 5 and figure 6. The figures show, for the situations depicted in figure 4 ( b )  and (d) 
respectively, the paths A ,  and A*,  along which the F-matrix elements are approximated. 
The small circles indicate the positions a (leftmost) and b (rightmost) in (3.3). 

To obtain the 2~ approximation we make use of the multiplication rule for the F 
matrices and write 

F(+O, +CO) =F(+O,  a ) F ( a ,  b)F(b,  +CO). (3.3) 
The intermediate points a and 6 are indicated in figure 5 .  Following the treatment 
in I, we estimate each matrix in (3.3). We thereby use results given in the work by 
Froman and Froman (1965), namely the basic estimates (4.3a)-(4.3d) and the inverse 
of the matrix in (7.56). The latter shows the effect of circumventing a zero in the 
complex r plane via two neighbouring anti-Stokes lines of the type used in figure 5 .  
It should be emphasised that the formula (7.56) just mentioned is valid only if W(r)  
is defined by the contour of integration pertinent to the turning point of interest. 

The first matrix to the right of (3.3) is found to be of the same form as the IT 
estimates in (3.1)-(3.2), i.e. with the reference point at (2), 

(3.4) 

p i  being the p integral calculated along the part of .A2 connecting +O and a. Again 
we notice that two matrix elements are unknown. 

The second matrix F ( a ,  6 )  can be studied with the aid of the basic estimates. 
Recalling the fact that lexp(iylz)ls 1, we obtain the result (a and 6 are lying on 
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anti-Stokes lines emerging from (1) and (2), respectively) 

where p i  is to be calculated along the part of Az connecting U and 6. 
Taking the inverse of the matrix (7.91) in the work by Froman and Froman (1965) 

and using properties of the F matrix analogous to those displayed in equations 
(4.4)-(4.9) in I, we easily obtain the estimate of F(b,  +CO). Hence, we find 

) 1 + O ( p T )  
- i+O(pT)  1+O(p?)  ’ P ( b ,  +CO) = ( 

with the appropriate p -integral estimate of the correction terms. 
Inserting (3.4H3.6) into (3.3) we arrive at the final 2~ expression 

(3.6) 

(3.7) 

where the p integral is to be calculated along the entire path Az.  We observe that 
the error term O(pz)  exp(-2iy12) in (3.7) may become large when lexp(iylz)) decreases 
so that apparently no reliable result can be obtained for the 22-element from (3.7). 
However, when lexp(iylz)l is sufficiently small the IT  estimate (3.2) is adequate and 
we see that the 22-element is approximately unity also in this case. The 21-element 
in (3.7) reduces smoothly to the IT result in (3.2) as lexp(iylz)l tends to zero. 

For the situation defined in figure 4(d)  we have that /exp(iylz)l 2 1. Again we have 
the possibility to perform a IT  estimate and a 2~ estimate, where the alternative paths 
ill and Az, respectively, to be used are depicted in  figure 6. The IT  estimate (along 
A I )  yields 

where the p integral is calculated along the entire path A l .  We expect p1 to become 
large when the quantity lexp(iylz)l tends to unity, and in that situation we must take 
into account also the turning point (1). 

The 2~ estimate is obtained by the use of the matrix product in (3.3). The first 
and third matrices on the right-hand side of (3.3) are estimated in precisely the same 
way as before, yielding the results (3.4) and (3.6), respectively. 

To obtain the estimate of the second matrix on the right-hand side of (3.3) we 
apply the basic estimates to the matrix F(6,  a )  and then we use the inversion formula 
(equation (3.20) in Froman and Froman 1965) to achieve the desired result. We get 

(3.9) 

Inserting (3.4), (3.6) and (3.9) into (3.3) we obtain 

which is valid provided Jexp(iylz)l3 1. 

the adequate turning point is (2). 
Equation (3.10) reduces to the IT result (3.8) in the limit /exp(iylz)l+o;), but now 
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If the CL integral is sufficiently small we can use the same approximate expression 
for the F matrix, obtained by neglecting terms proportional to kZ in (3.7) and (3.10), 

(3.11) 

This formula can be used as long as the topology of the Stokes and anti-Stokes lines 
required for its derivation is unaffected. This means (cf figures 4 ,  5 and 6 )  that one 
has to check the phase integral y12 so that Re(yI2) never becomes negative. At the 
boundary Re(ylz) = 0 (see figures 4 ( a ) ,  ( e ) ) ,  which defines the Stokes set, the two 
turning points lie on the same Stokes line and one should use the IT formulae (3.1) 
or (3.2). 

3.2. Three well separated turning points 

Let us now assume that the influence from a third turning point (3) becomes significant 
and that the 2~ configuration is only slightly disturbed (see figure 7).  Of course, one 
could imagine the third turning point to be situated in many different ways, relative 
to the other two turning points. However, by reasons of symmetry, we may still 
assume, without loss of generality, that (1) possesses the status of the innermost turning 
point. 

Complex r -  pione 

/ 

- 
-\ 

Figure 7. The figure shows the four possible ways, (I)-(IV), a well isolated third turning 
point (3) disturbs a two-turning-point configuration of (1) and (2), typical for a Regge 
state. The status of (1) as being the innermost turning point is assumed not to be affected 
by the introduction of (3). 

What happens when the 2~ treatment breaks down is that the CL integral calculated 
along the path Az becomes comparable to unity or larger. This fact means, within 
the semiclassical frame of validity, that a third turning point comes close to the part 
of Az lying between (1) and (2) or the one extending towards infinity. In figure 7 we 
have indicated the four possible ways in which the ZT configuration can be perturbed 
by a well isolated third turning point (3). 

Two of the four 3~ configurations thus created, namely (I) and (11), have the same 
topology and lead to identical results. Hence, we concentrate on (I), (111) and (IV) 
below. The configuration (111) is often encountered in CAM analysis of radial scattering 
problems where a single centrifugal barrier can be formed in the real effective potential. 
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However, (I) and (IV) correspond to more complicated situations where the physical 
potential may be complex or possess several barriers. 

For clarity we shall in the following omit correction terms proportional to the 
pertinent p-integrals. In the situation (I) we define a path A3 which circumvents the 
three turning points as in figure 8(I) and which will be used to derive the rel1:vant 
F-matrix elements. 

Complex r - plane ( 1 )  

Figure 8. Schematic drawing of how the paths A2 and A, are to be constructed for the 
situations (I) ,  (HI) and (IV) in figure 7. 

The F matrix is conveniently factorised in the following way 

F(+O, +m) = F ( + O ,  a )F(a ,  a’ )F(a’ ,  b’)F(b‘ ,  b )F(b ,  +a). (3.12) 

Here F(+O, a )  and F(6,  +a) are given, again, by (3.4) and (3.6), respectively. Because 
of the third turning point, F ( a ,  6)  in (3.3) is no longer approximately a unit matrix. 
Recalling that F(a,  a ’ )  and F(b‘ ,  6)  in (3.12) are approximately unit matrices (from 
the basic estimates of Froman and Froman (1965) and the discussion following (3.7) 
above), we now find that F(a ,  b )  is replaced essentially by the matrix F(a’ ,  6’). On 
taking the inverse of the matrix given by equation (7.56) in Froman and Froman 
(1965) and transforming the phase reference point to (2), we get 

(3.13) 

We see that (3.19) reduces to a unit matrix if j e ~ p ( - 2 i y ~ ~ ) l  vanishes, i.e. if the third 
turning point is pushed away, far up in the complex r-plane, and thus giving us back 
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the 2~ approximation. Combining (3.4), (3.6) and (34.13), we finally find 

(3.14) 

where irrelevant correction terms proportional to the CL integral, calculated along A3, 

are neglected. This result is also obtained for the situation (11) mentioned above, if 
the turning points are properly relabelled. 

The analysis of the situation (111) in figure 7 is analogous to (I) and we can use 
the same factorisation (3.18). Because of the different orientation of Stokes and 
anti-Stokes lines of the third turning point (see figure 8(III)) we use here formula 
( 7 . 5 ~ )  in Froman and Froman (1965) for the matrix F(a’ ,  67, leading to 

(3.15) 

The matrix (3.15) reduces to unity if lexp(iysz)l vanishes, which is the case when (3) 
is pushed away downwards in the complex r-plane. The complete F matrix becomes 

- ) (111). F‘2’(+0, +a) = (-i(l+e-2’”*+e-’””) 1 + e - 2 i Y 1 3  

- 
(3.16) 

Configuration (111) is frequently met in CAM analysis of scattering systems described 
by a single-well radial potential where (2) and (3) correspond to the turning points 
at the complex centrifugal barrier. In 9: 4 we shall discuss this case further and derive 
useful formulae for calculating the properties of the CAM poles. 

In figure 8(IV) we have constructed A3 for the final case (IV). The factorisation 
now reads 

(3.17) 

For the product of the three first matrices to the right of equation (3.17) we have 
essentially the 2~ formula 

F(+O, +a) = F(+O, a )F(a ,  b)F(b,  c ) F ( c ,  c ’ )F(c ’ ,  +col. 

- 
F‘”(+O, c )  -- ( 

-i(l +exp(-2iylz)) 1 
(3.18) 

Furthermore, F(c ,  c‘) is again approximately the unit matrix and F(c’ ,  +a) is obtained 
from ( 7 . 5 ~ )  in Froman and Froman (1965) together with (2.6) (cf equation (3.15)). 
Thus 

F”’(c, +a)=(o 1 i exp(2 iyd  
1 (3.19) 

and by combining (3.18) and (3.19) we find 

(3.20) 

If we compare (3.20) with the 2~ result (3.11) we notice a change due to the third 
turning point only in the 22-element. This was not the case in the situation (111) above 
for which (3.16) shows a change in both the 21- and 22-elements. One might ask 
oneself if this difference between (3.16) and (3.20) results in an inconsistency at the 
common limiting configuration of validity where iy23 = Re(iyz3) > 0. 
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Again the explanation must be that, for well separated turning points, the difference 
between two distinct topologies is numerically insignificant there. If a situation is 
encountered where significant discontinuities occur at the Stokes set, i.e. those complex 
values of I which produce limiting configurations, then the turning points can no 
longer be considered as well separated. 

Instead, to resolve the problem one has to invoke some uniformisation procedure 
(see e.g. Barany and Crothers 1983 and Connor 1968) for the particular critical 
subsystem of turning points. 

4. Approximate CAM pole condition and S-matrix residues 

Throughout this section we shall assume that l belongs to a certain region of the 
complex angular momentum plane which corresponds to the topology of turning points 
shown in figure 8(III). The relevant F-matrix elements are then given in equation 
(3.16). Inserting (3.16) into (2.1) we find the approximate phase-integral expression 
for the S matrix 

1 +exp(-2iy1,) 
1 + exp(-2iy12) + exp(-2iy13) Si = exp(2i771), 

with the phase shift qI calculated from the turning point (2) according to the formula 

7 7 1  = ,++a lim (w,(r)-kr)+(I+i) . r r /2 .  (4.2) 

Equation (4.1) (or, equivalently, (2.10) together with (3.16)) immediately yields an 
approximate condition for obtaining the positions of the CAM poles of the S matrix. 
The condition reads 

D(1, m, E )  = 0,  (4.3) 

where in (4.3) D is the denominator of (4.1) written in the form 

D(1, m, E )  =exp(-2iyI2) +exp(-2iy13) -exp(-2i.rr(m +$)), (4.4) 

with m = 0, 1 , .  . . . Negative integers m in (4.4) are excluded because (4.3) would 
then require at least one of the phase integrals to have a negative real part, which is 
inconsistent with the topology in figure 8(III ) .  

Condition (4.3) is to be solved with respect to I holding the energy and the integer 
m at fixed values. There are expected to be many, and even an infinite number of 
solutions I ,  ( E )  to (4.3) for most collisional systems of heavy particles (Connor 1980). 

In some neighbourhood of a CAM pole I = I,, which we assume to be simple, the 
S matrix takes the form 

where rm ( E )  is the residue corresponding to the pole at 1 = 1, (E) .  An approximate 
expression for r, is found directly from (4.1) by expanding the denominator D around 
the pole position. We have 

(4.6) 
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where from (4.4) 

(4.7) 

The calculation in (4.7) of the partial derivative of the closed loop integrals defining 
the y ’ s  may seem to be very tedious when higher-order phase integral approximations 
are used. However, we can apply the general formula, for the derivative of q(r)  with 
respect to a parameter, derived by Froman (1974), i.e. 

where in our case only K =l ,  E are relevant. The function Q2 appears in the radial 
Schrodinger equation and is given by (1.2). It is required that the closed path r in 
(4.8) stays outside the regions around each turning point where zeros of q are situated 
(see a discussion in B 3 in I). 

As is obvious from (4.3), the CAM pole positions can be considered as function 
of both the pole number m and the energy E. Thus, at a given energy, the poles are 
situated on a so called pole string, defined semiclassically by the continuous parameter 
m in (4.3). Alternatively, given an integer m to specify a particular pole, / , ( E )  
describes a certain path (pole trajectory) in the complex l-plane, as the energy is 
varied (see figure 9). 

Complex / -plane i 

Figure 9. The figure shows typical locations of CAM poles at different energies. The pole 
strings (broken curves) and pole trajectories (full curves) are indicated. 

Approximate expressions for the pole strings and pole trajectories can provide 
accurate inputs in the numerical root searching procedure which solves (4.3) for some 
new values of tn and/or E. On a local scale one can use a linear approximation. Let 
us, for example, assume that a CAM pole has been found at 1 = 1, ( E ) ,  say. The pole 
lmt(E’)  is then by a linear approximation given as 

l ,~(E’)-l,(E)+s,(E)(m’-m)+t,(E)(E’-E), (4.9) 
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with 

sm (E) E dl, (E)/dm, 

t ,  (E) = dl, (E)/dE.  

(4.10) 

(4.11) 

Phase-integral formulae can be obtained for the local linear coefficients sm (E) and 
t ,  (E) of the string and trajectory, respectively, starting from the implicit relation (4.3), 
i.e. in our case: 

(4.12) D(1, (E), m, E )  = 0. 

Firstly, (4.12) holds identically along the string, so that 

With the aid of (4.4), (4.13) reduces to 

(4.13) 

(4.14) 

where, of course, m must be a non-negative integer for 1, (E) to represent a true pole 
position. Again the denominator in (4.14) is given by (4.7) and (4.8). 

Similarly, we can differentiate (4.12) with respect to the energy E, keeping m 
constant, with the result 

tm (€1 = -(aD/aE) = I , d a D / a l )  I = I ,  , E ) .  (4.15) 

Here the numerator takes the explicit form 

(4.16) 

which together with (4.7) and (4.8) specifies the phase-integral expression for t ,  (E). 
The formulae derived in this section can be considerably simplified if the contribu- 

tion from the third turning point has become insignificant. The procedure is quite 
straightforward and amounts to the neglect of (putting to zero) the exponential 
exp(-2iy13) where it appears in equations (4.1), (4.4), (4.7) and (4.16). Thus the CAM 
pole condition (4.3) reduces to the Bohr-Sommerfeld form 

Y 12 = (m + b, m = 0,1 ,  . . . . (4.17) 
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We finally point out that our formulae, in the first-order phase-integral approxima- 
tion, for the CAM pole condition and the residues agree in the 2~ limit with those of 
Connor (1980), Dombey and Jones (1968) and Brander (1966), and that they generally 
seem to be equivalent to the complex trajectory results of Knoll and Schaeffer (1976). 

5. Conclusions 

In the present paper we have derived a 3~ phase-integral expression for the S matrix, 
valid in regions of the complex I-plane where S has poles, whose derivation required 
essentially: 

(i) the turning points ( l ) ,  (2) and (3) must be sufficiently isolated, i.e. Iy121, 1 ~ 1 3 1  

and Iy3zl large enough; 
(ii) the mutual orientation of turning points must be topologically equivalent to 

figure 8(III), i.e. Re(y12), Re(yI3) and Re(y32) > 0. 
It is not very difficult to check that the use of the S-matrix expression obtained 

is consistent with the conditions (i) and (ii) above. If (i) and (ii) are not satisfied, one 
should be careful. For example, when a particular 1-value is very close to a Stokes 
set (usually a line) in the complex 1-plane, where a phase integral becomes purely 
imaginary, one has to make sure that the discontinuity across the Stokes set, introduced 
by the switching to the relevant formula on the other side, is insignificantly small. If 
this is not the case a uniform treatment must be employed. 

From our S-matrix formula we derived a complex angular momentum pole condi- 
tion and expressions for the pole residues. We discussed further the local behaviour 
of pole strings and pole trajectories. 

Our main results generalise those of Knoll and Schaeffer (1976) in that higher-order 
quantum corrections are systematically included in the formalism. In the 2~ limit our 
formulae agree also with results of a partly uniform treatment of Connor (1980) and 
an asymptotic analysis of Brander (1966). 
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